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ABSTRACT: We present a new ab initio way to calculate X-ray Raman scattering
spectra within the independent electron approximation. Our approach avoids any
approximation about the shape of the used potential and leads to good agreement
between experiment and theory. We show that the momentum transfer dependence in
two typical cases, the F K-edge in LiF and the B and N K-edges in hexagonal BN, is
well-reproduced. A more in-depth analysis of the electronic states and of the local
atomic structure around the absorbing atoms is at hand.

1. INTRODUCTION

Unraveling the electronic and local atomic structure is a
mandatory step to understand the properties of matter. For this
purpose, especially for disordered systems such as liquids and
glasses, X-ray absorption spectroscopy (XAS) has been
tremendously useful. However, in many cases the absorbing
sample environment, for example used to create extreme
conditions, or even the self-absorption in the sample itself
renders the investigation of absorption edges of light elements
very difficult. In these cases, nonresonant inelastic X-ray
scattering (NIXS or NRIXS), which uses the energy loss
between incoming and outgoing hard X-rays, becomes help-
ful.1,2 It is a part of all of the inelastic X-ray scattering processes,
which also include resonant inelastic X-ray scattering (RIXS).
In the present paper, we are specifically concerned with the
energy loss resulting from an electronic transition from a core
state up to the conduction band, so closely connected to the
absorption edges seen in XAS. In this case, the X-ray Raman
scattering (XRS) terminology is most often used, and we will
keep this last acronym in the following. From the first XRS
experiments, performed by Suzuki and collaborators at the end
of the 1960s,3,4 a vast improvement of this nonresonant
inelastic scattering technique has been achieved, with the
development of new spectrometers at different synchrotron
beamlines5−8 with increased detection power as well as energy
and angular resolution.9 In addition to the access to low-energy
edges, XRS has the property that it depends on the momentum
transfer, q, between the incoming and outgoing beams. Thanks
to the recent experimental improvements, the sensitivity to this
term enriches the overview of the electronic states around the
absorbing atoms.10

The purpose of this paper is to present a new way to simulate
XRS spectra using first-principles theory and to give examples
of information that we can obtain in this way from the
investigated materials. We use a density functional theory
(DFT) approach, and we already know from the X-ray
absorption near edge structure (XANES) that this theory is
convenient for simulating the K-edges of all of the elements and

the L23 edges of the heavy ones. This restriction makes our
method complementary to the multiplet ligand field theory
already used for example by Gordon et al.11 to simulate XRS or
to the related but less used effective operator approach of van
Veenendaal and Haverkort.12 These methods are very
specifically devoted to highly localized states and never to the
main dipole component at K-edges.
DFT simulations are already possible. They use a plane-wave

pseudopotential framework,13 transition potential approxima-
tion,14,15 or the more user-friendly multiple scattering theory10

but are limited to potentials described within the muffin-tin
approximation that is spherical inside the atoms and constant
between them. FDMNES16 is a self-consistent ab initio code
that is already extensively used to simulate XANES and
resonant elastic X-ray scattering (REXS). Its full-potential
approach makes it especially precise for simulating absorption
edges of light elements often embedded in nondense
surroundings or within low symmetry. On the other side, its
calculation method is relativistic, and the heaviest chemical
elements are also accessible. Finally, XRS, like XANES, is only
poorly sensitive to the band gap or to the thinnest features
specific from correlated materials. All of this makes our method
suitable for all kinds of materials without any restrictions.
The paper is organized as follows. In section 2 we give the

main theoretical ingredients of XRS. Section 3 is devoted to the
implementation in the FDMNES code and to the character-
istics of the calculation. Finally, in section 4 we present two
applications, showing comparisons between experimental data
and simulated spectra of the F K-edge in LiF and the N and B
K-edges in h-BN.

2. THEORY
2.1. XRS Formulation. Most of the theory can already be

found in papers17 or textbooks.1 Therefore, in this context we
just recall the basic relations of XRS. The double differential
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scattering cross section derived from a first-order perturbation
treatment of a scattering event connected with the transition of
the electron system from its ground state |i⟩ into a final state |f⟩
is given by
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where ϵ1(2) and ℏω1(2) stand for the incoming (outgoing) beam
polarizations and energies, respectively, whereas ℏω = ℏ(ω2 −
ω1) is the energy transfer. The momentum transfer q = k2 − k1,
where k1(2) is the momentum of the incoming (outgoing)
photon beam, is given in reciprocal space units. r0 is the
electron radius, and the dynamic structure factor S is given by
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where Ei and Ef are the energies of the core (initial) and excited
(final) states of the material. We have directly written the
formula within a monoelectronic approach, thereby avoiding a
summation over all of the electrons of the system.
It is straightforward to observe that when a first-order

expansion of the exponential in eq 2 (e−iq·r = 1 − iq·r) is used
and the near orthogonality of the core and valence wave
functions (they are solutions of nearly the same Hamiltonian
for core spectroscopies) is taken into account, in the limit of
small q, S is simply proportional to the absorption cross section
within the dipole approximation, with q playing the role of the
polarization in XAS.
The q dependence seen in many experiments nevertheless

needs a more precise description of the transition operator. To
this end, we use the relation
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where q and r are the moduli of q and r, respectively, q ̂ and r ̂
are the angles representing the momentum transfer and
position, respectively, and the jl are Bessel functions.
Introducing this expansion in eq 2, one gets
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In the above expression, the l = 1 term, to first order, leads to
the dominating dipole component: j1(qr) = −cos(qr)/(qr) +
sin(qr)/(qr)2 ≈ 1

3
qr. With increasing qr, higher-order terms in

the expansion gain weight, and new excitation channels with l ≠
1 open up, leading to the 2l-pole transition channels. Very
interestingly, for l = 0 to second order we have j0(qr) = sin(qr)/
(qr) ≈ 1 − 1

6
(qr)2, and contrary to XAS, the r2 term makes this

so-called monopole contribution nonzero. The Δl = 0 selection
rule in the transition between the core and valence states then
follows. Consequently, at the K-edge, for instance, it probes the
s states, whereas the dipole transition probes the p states.
Likewise for l = 2 one gets quadrupole transitions, for l = 3
octupole transitions, and so on. The richness of the q-

dependent analysis lies in a more complete understanding of
the projection of the density of states onto the absorbing atoms.

2.2. Expansion in the Atomic Basis. Upon comparison of
the XAS and XRS formulas, except for the prefactor, the only
difference is the different transition operators. In XANES it is
g iven , up to the e lect r ic quadrupole term, by

= ϵ· + · +o r k r(1 ...)i
2

, where k is the electromagnetic wave

vector, whereas in XRS one uses the expansion in eq 3. In the
atoms, we use the expansions in spherical harmonics for the
core and final states:18
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where σ is the spin and L = (l, m, s). Following Wood and
Boring,19 we have used the (l, m, s) basis instead of the more
classical (l, J±, Jz) quantum numbers, and = ±s 1

2
is the index

of the two solutions of the radial relativistic Schrödinger
equation, bLσ. When spin−orbit splitting is omitted, s and σ
merge. aLσ

i( f) = al,m+σ−s,s
i( f) is the amplitude, and χσ is the spin

projector. For the core, the aLσ
i are nonzero for a single li value

corresponding to the edge and such that the state is normalized
to 1, whereas the aLσ

f are related to the density of the valence
states. They are also related to the multiple scattering
amplitudes τLL′σ by
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Each of the matrix elements thus becomes
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In eq 8, the angular integral, or Gaunt coefficient, is given by
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leading to the selection rules. The radial integral is
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The only differences compared to XAS are thus first that rl is
substituted by jl in the radial integral and second that the
angular terms and their summations are slightly different.
Introducing all of these terms into eq 4, one gets
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where each core state i has at most two components of different
spin states, which makes its contribution diagonal.
One can also note that for disordered materials (i.e.,

averaging over the incidence angles and thus the q directions),
the orthogonality of the spherical harmonics limits the double
summation over l, m and l′, m′ to its diagonal terms, and the
products il−l′Ylm*(q ̂)Yl′m′(q ̂) may simply be skipped. Conse-
quently, as in XAS, one does not get crossed multipole terms.
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3. IMPLEMENTATION
The FDMNES code is an ab initio software that allows
simulation of X-ray absorption spectroscopy as well as resonant
and nonresonant X-ray scattering spectroscopies. One of its
main characteristics is that two different techniques can be
independently used to solve the electronic structure. The full-
potential finite difference method (FDM) precisely applies for
arbitrarily shaped potentials,20 while full multiple scattering
theory (MST) gives rise to less precise but faster calculations.
As stated in the Introduction, calculations can be applied for all
classes of materials, and it is especially efficient for the K-edges
of all of the elements and the L2,3 edges of the heavy ones. It
should nevertheless be noted that a time-dependent DFT (TD-
DFT) extension expands the scope of the software to the other
edges.21 Importantly a recent numerical development in
FDMNES within the FDM framework22 makes this code up
to 40 times faster than it was before. The response functions of
most materials can thus now be computed on conventional
personal computers.
The main steps in an FDMNES simulations, illustrated

Figure 1, are the following. First, from the unit cell (or

molecule) structure given by the user, the code performs an
analysis of the space and point groups to get the equivalent and
nonequivalent atoms. Second, the code makes independent
self-consistent calculations of the electronic structure around all
of the nonequivalent absorbing atoms. It uses a cluster
approach, limiting the simulation to all of the atoms inside a
sphere that is often but not necessarily centered around the
absorbing atoms. The necessary cluster radius is typically in the

range of 5−7 Å but is sometimes greater for highly symmetric
structures. Third, the nonoccupied electronic states are
calculated using the resulting potential over the entire energy
range probed by the photoelectron. It is at this step that using
the FDM we directly solve the relativistic or nonrelativistic
Schrödinger equation on a grid of points and get as solutions all
of the final-state amplitudes of the wave functions on these grid
points expressed in the spherical harmonic basis of the atoms.
From eq 7 they lead to τL̂fLf′σ. Equation 11 for S(q, ω) is thus
general using either FDM or MST. The f states are defined
from the outer sphere using the spherical solutions in vacuum
(Bessel and Hankel functions) and not plane waves. The
number of elements in this basis depends on the sphere radius.
Finally, a Lorentzian convolution to account for the core hole
and photoelectron state width is performed, optionally followed
by a Gaussian convolution to account for the experimental
resolution, and the total signal with its multipole expansion is
obtained by summation of the contributions from all of the
absorbing atoms of the molecule or the unit cell. By default the
core hole is included only in the third step, but an option that is
sometimes necessary for insulating materials allows its
introduction also in the second step.
It should be noted that all of these steps are automatic, with

the user giving only the atomic structure, the energy range to
calculate, the wanted edge, and a specific keyword to choose
the FDM or MST simulation technique. This is the point that
makes the code especially user-friendly.

4. APPLICATION

4.1. Experiments. All of the experimental data were
collected at beamline ID20 of the ESRF. Photons from four
U26 undulators were monochromatized first by a cryogenically
cooled Si(111) double-crystal monochromator followed by a
Si(311) channel-cut monochromator. By means of mirrors in
the Kirkpatrick−Baez geometry, the incident X-ray photons
were focused to a spot size of 10 μm × 20 μm (V × H) at the
sample position, which was located at approximately 65 m from
the source. We used the large-solid-angle XRS spectrometer
employing 36 spherically bent Si(660) (bending radius of 1 m)
for the energy and momentum analysis of the inelastically
scattered photons. The analyzer crystals are arranged in three
groups of 12 crystals in the vertical scattering plane, where the
groups have mean scattering angles of 40°, 80°, and 120°,
respectively. For the final q-dependent spectra we averaged
signals from three analyzer crystals with equal momentum
transfer, giving rise to momentum transfers between 3.0 and 9.0
Å−1. We used the XRStools program package to analyze all of
the experimental data.2 The overall energy resolution was 0.7
eV. The samples (LiF and h-BN, both obtained from Sigma-
Aldrich and used without further processing) were finely
ground to powder and pressed into small pellets.

4.2. Results on LiF. LiF is a cubic system with space group
Fm3 ̅m and a = 4.0351 Å. There are four equivalent LiF
molecules in the unit cell, and the F point group is m3m. It is
thus a highly symmetric system. We performed self-consistent
field (SCF) simulations for clusters with radii of up to 8 Å,
where convergence was achieved. We found slightly better
results when the core hole was included in the SCF. After the
main calculation, the simulated spectra were convoluted by a
Lorentzian function whose width is a sum of two terms. The
first term is related to the core-hole lifetime and is ΓH = 0.21 eV
for the F K-edge. The second term corresponds to all of the

Figure 1. Flowchart of FDMNES. The different steps are automati-
cally performed.
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inelastic processes of the photoelectron. By default FDMNES
uses a simple arctangent model versus photoelectron energy
ranging from 0 eV at the Fermi energy up to a maximum value
Γm at high energy. Here we chose Γm = 5 eV. Finally, a
Gaussian broadening with a full width at half-maximum (fwhm)
of Γa = 1.1 eV was applied to account for the finite experimental
resolution.
In Figure 2 we show the agreement between the simulation

performed using the full-potential FDM approach and the

experiment at the F K-edge. We recover the results already
found at this edge by Ham̈al̈aïnen and collaborators.13 It is
good for the general shape and the main feature positions. To
see better the change in the monopole term with the three
values of q (3, 6, and 9 Å−1), the data and simulated spectra
were normalized to the main peak at 692.5 eV. The monopole
contribution explains the pre-edge peak at 690 eV. This feature
is thus a pure s state. The monopole also gives a contribution
beyond 710 eV that explains the smooth increase in the
intensity with increasing q. The quadrupole contribution was
included in the simulation, but it is very small.
By comparison with a calculation using the multiple

scattering approach within the muffin-tin approximation for
the potential shape (all other parameters being the same), one
can check in Figure 3 that the agreement is better using FDM.
The amplitude of the main peak at 692.5 eV is better
reproduced, and the monopole contribution is well-resolved.
MST does not give a clear pre-edge feature, and we thus see
that even in a highly symmetric system the full-potential
approach leads to better agreement between experiment and
theory.

4.3. Results on h-BN. To perform the simulations on h-BN
we used the Wyckoff structure.23 Its space group is P63/mmc
with a = 2.50399 Å and c = 6.6612 Å, and there are two
equivalent BN molecules per unit cell. For both atoms the
point group is 6 ̅m2. In the same way as with LiF, we performed
SCF simulations for clusters with radii of up to 8 Å at the B
edge and 10 Å at the N edge, where convergence was more
difficult to achieve. As for LiF, SCF was performed with the
core hole included. For the convolution we used ΓH = 0.15 and
0.18 eV for B and N, respectively. We again chose Γm = 5 eV,
but we used a Gaussian broadening of Γa = 0.3 eV, which is
lower than for LiF.
As shown in Figure 4, the general shape and the main feature

positions from the FDM simulation and the experiment at the
boron K-edge are in good agreement, slightly better than in the
previous study by Feng et al.24 We also found that the
monopole contribution increases with increasing q. Interest-
ingly, it can be seen that there is no monopole contribution in
the first peak at 192 eV. This feature is thus a pure 2p state, and
as in the case of LiF, we chose it to normalize the different
spectra. It can be clearly seen that the change in the second
peak is mainly due to the monopole contribution. As observed
for LiF, the quadrupole contribution is very small.
We used the same normalization procedure at the nitrogen

K-edge because again the first feature has pure dipole character.
At this edge the agreement is not excellent, especially in the
lowest -energy part of the edge (Figure 5), but nevertheless the
main features are there. We attribute the shoulder located at
406 eV with increasing q to the monopole contribution.
Looking at the structure and the density of states given by

the code makes the spectroscopic analysis straightforward. The
lowest-energy peak in the N and B K-edges corresponds to the
antibonding N-pz−B-pz σ* level, seen respectively from the N
and B sides. The basal symmetry plane makes the atomic s−pz
hybridization impossible, which explains the lack of monopole
contributions at the corresponding energy.
On the contrary, because of the threefold axis, the px and py

states are sp2-hybridized when forming a band with their
neighbors. A monopole peak is thus visible at the second
feature in both edges. It should also be noted that because the
interatomic distances in the basal plane are smaller than those

Figure 2. XRS spectra of the F K-edge in LiF for q = 3, 6, and 9 Å−1:
(bottom) experimental spectra; (top) simulations. Dotted lines show
the monopole contribution, which increases with increasing q. To
better highlight the change with q, the data and simulated spectra were
normalized to the main peak at 692.5 eV, which has mainly dipole
character. The effect of the monopole term is evidenced by the first
feature at 690 eV but also contributes at higher energy, where it is
responsible for the slight increase in intensity.

Figure 3. Comparison of the XRS spectra at the F K-edge in LiF for q
= 9 Å−1 using the FDM and MST/muffin-tin approaches. The bottom
curve is the MST simulation, in the middle the FDM simulation, and
at the top the experiment. In the lowest-energy part of the spectra, the
full-potential FDM shows better agreement with experiment, and the
monopole component (dotted line) is well-reproduced.
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in the plane along the c axis, it is well expected that the
corresponding N-sp2−B-sp2 antibonding molecular orbital lies
at higher energy. Finally, the very low contribution of the
quadrupole is simply due to the low atomic number of the
absorbing atoms, resulting in a very low amplitude of their
nonlocalized d states.

5. CONCLUSION
We have shown that good agreement with XRS data can be
obtained using an ab initio DFT simulation technique with an
arbitrarily shaped potential. The examples shown here are
spectra of powder samples. Further analysis on monocrystals
will give access to nondiagonal terms, as in works performed
with the natural circular dichroism in XANES through the
E1E2 interfering transition channel.25 In XRS the monopole−
dipole term, which we could call E0E1, offers new interesting
perspectives to study samples without a center of symmetry
using linearly polarized light. The work presented in this paper
is also valid for electron energy loss spectroscopy (EELS),
which is now routinely performed on many transmission
electron microscopes, because it is based on the same transition
operator. Finally, the code also contains a TD-DFT extension,
which will be adapted to calculate the XRS response function of
the L23-edges of 3d transition elements.
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